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EXECUTIVE SUMMARY

Disturbance accommodating control theory is concerned with the need to
meet the control objectives despite interference from the disturbances.
Somtimes it is impossible to completely cancel the effect of a disturbance on
all the plant's states, but it is possible to cancel the disturbance's effect
on certain "critical™ varlables. This {s known as disturbance absorption for
critical variables. The original theory on this subject {s described in
Reference 1. The objective here was to develop an alternative method based on
a state space approach. This has been done and is described herein. Example
problems illustrating the application of the theory are also iancluded, 1in the
Appendix, with simulation results to verify the theory. The method developed
here retains the drawback of earlier methods [l1] in that {t is not always
possible to stabilize the non-critical varfables. This is demonstrated in
Example 1 of Appendix. This lack of stabilization is, however, easier to spot
than in the older method.

Léccemon For ]
NTIS  CRa&l v
a
a

LTiIC TaB

Unaﬂnourced

Justiication
- .

By ..

Distributiany

AvaileL.ity Codes

| Aval and ! or
Special

l

Al |

6ist

iii/(iv Blank) \ “; ¥?v;>




r

TABLE OF CONTENTS

Page

I. INTRODUCTION . coceecoosoovossssessasnsonsossosssssaassscsesssassnane 1
II. ALTERNATE METHOD OF DISTURBANCE ABSORPTION FOR CRITICAL VARIABLES. 1
III. DESIGN PROCEDURE SUMMARY.:.::ctvesoesocosesssssenononsnsarsasasance D
1v. CONCLUSIONS/REMARKS e et eovvssscnruoennasnssssosscacsosoncsaanaaness 7

REFERENCE S e cvoeeevesoscesnsesssssansecsssssecssosnstosssssscossssnsasssossess 8
APPENDIX.....I.OOQ....0..‘0.000..l.l...l.lol.l.l...."..o.b"...ll.OOO-- A—l

v/(vi Blank)




r

I. INTRODUCTION

Many real-world control problems require an ability to maintain adequate
control in the face of disturbances. Often, this can be handled by applying
the complete cancellation condition of Disturbance Accommodating Control (DAC)
theory. The complete cancellation condition allows us to cancel the distur-
bance's effect on all the state vartables. This condition can not always be
met; thus, a method {s needed to cancel the disturbance's effect on certain
critical variables. A method for doing this is described in Reference 1.

v But, as it is sometimes difficult to apply, an alternate method was sought.
This new method i3 developed and described herein.

I1. ALTERNATE METHOD OF DISTURBANCE ABSORPTION FOR CRITICAL VARIABLES

In this report, we are concerned with finite-dimensional controlled
linear systems governed by differential equations of the forms:

X = A*X + B*J + Fry (1)

where X = (X1,...,Xn) i{s the state vector for the system, U = (U1,...,Ur) is
the control input, and W = (Wi,...,Wp) is the disturbance {nput. The matrices
A, B, and F are assumed to be known and constant. The class of disturbances
to be considered consists of waveform structured disturbances [2] which can be

modeled by:
W(t) = H*zZ (2)
7 = Dz (3)

where the vector Z = (Z1,...,Zy) 18 the state of the disturbance W. The
matrices H and D are known and constant. The disturbance i{s not directly
measurable, in general, but can be estimated using the techniques available in
DAC theory described in the references.

The problem is to stabilize the state vector X to a linear subspace such
that the critical state variables X¢ = (Xcl,...,Xem), m<n, are asymptotically
stable to the null solution Xc(t) = O with the remaining (non-critical) state
variables remaining bound in the subspace. Assume that the complete cancel-

N lation condition of DAC theory (B*r + F*H = 0) is not possible for any cholce
of T. Thus, the general disturbance cancellation theory cannot be applied to
the problemn.




Begin by partitioning the system given in Equatfon 1 {nto critical and
non-critical vartables as shown below:

Xe Al Al12 Xe B1 Fi
U + W (%)

Xnce A21 A22 Xnc B2 F2

+

Since it is desired that the critical state variables (Xc) be stabilized to
zero, the control needs to be designed to make the critical state variables
asymptotically stable while canceling any effects of the disturbance or non-
critical states on the Xc. Thus, U could be designed as:

U = Up + Ud = Kp**c + T1*Z + r2*Xnc (5)

where Up = Kp*Xc is responsible for stabllizing the critical variables to zero
while Ud = [1*Z + r2*Xnc cancels the effects of the disturbance and non-
critical variables on the Xc. This requires:

Bi*(ri*Z + r2*inc) + A12*Xnc + F1*H*Z = O (6)
or

Bl*rl = =-F1*H (7)

Bi*rz = -Al2 (8)

where Kp is picked to stabilize:
Xc = (A1l + B1*Kp)Xc (9

Note that the non-critical state variables are ignored, and this i{s unwise
unless they are inherently stable, with respect to the subspace. Also, they
must remain bounded fn the subspace. If the non-critical variables start to
grow without bound, most real system will soon run into trouble. Unfortunately,
there {s not much that can be done to stabflize them using the above procedure.
It may sometimes be possible to exploit the non~uniqueness of the control action
fn stabilizing the non-critical varifables. The general form for the coatrol
gain has been developed in Reference 3 and can be combined with the modified
disturbance cancellation condition in Equation 7 to yield a more general form
for the control parameters. The design equations for the control parame-
ters then become:

Bi1*r = «F1*H (19)




K = -(c*B)Taceamuan? + [I-(C*B)ExC*B]gru?
+ o[l - maut) (L1)

where

C is an m x n matrix such that Xc = C*X

M is an o x n-m matrix of rank n-m spanning the
subspace such that C* = 0

(1)f is the Moore-Penrose generalized inverse of (!)

Mt = (M‘*M)‘I*M‘ where M” 1s the traanspose of M

¢ is an r x n-m real parameter matrix

8 is an r x n real parameter matrix chosen to make the
critical variables asymptotically stable

1 is the identity matrix

The control action is given by U = K*X + T*Z with K and T found from the above
relations. Note that using the K given in Equation l1 automatically cancels
the A12*Xnc term thus doing away with the need for Equation 8. When the
generalized inverse of C*B amultiplied with C*B is not equal to I, we can
attempt to specify ¢ In the second term in Equation 11 to stabilize the non-
critical variables.

When the above procedure {s examined closely, it bacnaes apparent that it
fails for Bl = 0. This is due to the dependence on U to cancel the effects of
the disturbance aand the non-critical variables on the critical variables. 1If
Bl is zero the coatrol caanot directly affect the critical variables and thus
the only alternative is to maneuver the non-critical state variables to cancel
the disturbance effects on the Xc. Thus, it is desired that:

A12*Xqe + FL*HAZ = 0 (12)
To accomplish this, a servo tracking system is designed where the servo coa-
mand drives Xnc to cancel the disturbance effects on the critical variables.
Define the servo tracking error as:

e =X - Xs (13)

with the servo command:

Xs = 9 yA ==3) gz = Xc (L4)
r enc = Xnc - T*Z
then
e =X - Xs (15)
or
All Al2 €C 0 Al2*r + F1*H ol .
€= 7= [ | F oY + |- ===z - |-| 2 (16)
A21 | A22 gnc B2 A22*%T + Fa* r




Which when written out becomes:

ec = All*cc + Al2%enc + A12%T*Z + F*H*Z (m
enc = A21%*cc + A22%cnc + B2*U - r*Z
+ A22*%P*Z + F2*H*Z (13)

Now split the coutrol action into U = Up + Ud and use Ud to cancel the distur-
bance terms. Cancellation of the disturbance effects on e requires that:

A12%r = -F1™8 (19)

and

B2*Ud = —-A22*T*Z ~ F2*H*Z + r*Z (29)
Thus, choose Ud = r2*Z + r3*Z such that:
B2*r2 = =A22*F -~ F2*i (21)

and

B2*r3

[}
Lar |

(22)
where I' must satisfy Equation 19. To obtain zero tracking error it is
required that:

e = (A + B*K)e (23)
be asymptotically stable. Thus, design Up = K*¢ to place the eigenvalues of
A + B* in the left half plane.

Note that 1f some of the rows of B2 are also zero, then they are not
directly controllable by U and another servo tracker may be needed Lo contral

them to the desired values. This {s demonstrated {n Example 3.

Equations 19, 21, and 22 can be combined to yileld:

A12*B2*r3 =-F1*H (23)
and

B2*r2 = -~Ag7*By*rj3 - Fa*H (25)




r

Replace ' in Equation 14 with r = B2*r3. This eliminates the need to find T.
Now apply the generalized inverse to obtain:

3 =<(A;,*B2)f *F1*4 (26)
rz =-(B2)f (A22*B2*r3 + F2*H) (27)

Equations 26 and 27, along with satisfactory stabilization of Equation 23,
are sufficient for a solution. They are not necessary however, as can be
easily seen from Example 3 where a satisfactory solution is obtained when no
solution exists for 26 and 27.

Note that this procedure depends on the ability to maneuver the non-
critical variables as desired. This may not be possible in some cases, while
in others a surplus of maneuverable variables may be available giving the
engineer some design freedoa.

III. DESIGN PROCEDURE SUMMARY

The design procedure is summarized for the two cases developed previously.
First, partition the system into critical and non-critical state variables as
shown:

Xc B1 U+ F1 W

Xnc B2 F2

~N

Xc All Al

Xne A21 A2

N

If B1 is not equal to zero, then apply the first procedure and attempt to
design the coantrol action as U = K*X + r*Z where X and T must satisfy:

" B1*r = -F1*i
and

K = ~(C*B)f *cxarmam? + [1-(C*B)E *C*B]gruf
+ o[L - urm#)

where {

C is an m x n matrix such that Xc = C*X

M is an n x n-m matrix of rank n-m spanning the
subspace such that C* = 0

(!)f 1s the Moore-Penrose generalized {nverse of (!)

M# = (M-*M)~l *M- where M“ is the transpose of M

¢ 1s an r x n-m real parameter matrix

8 is an r x n real parameter matrix chosen to make the
critical variables asymptotically stable

I is the ldentity matrix




Note, this procedure {s not always successful even though K and I are obtalned
meeting the above criteria. This method depends on the non-critical state
variables remaining stable and bounded in the subspace. This may occur
naturally or when C*B pre-multiplied with its generalized inverse {s not equal
to I, we may be able to specify ¢ above such that it aids in stabilization of
the non-critical variables.

For Bl = O, use the second procedure. Design 2, '3 to satisfy:
r3 ==-(A12*B2)E*F1*d
r2 = -(B2)f(A22%B2#r3 + F2*H)

and Up = K*g to stabilize

.

¢ = (A + B*K)¢

The final control {is then given by:

U = K¥(X ~ Xs) + T2*2 + r3*z

where
0
Xs = -———==]2

B2*r3

Note that meeting these conditions are sufficient for a solution, but they are
not necessary. In particular, if the B2 matrix has some zero rows, the servo
tracking idea can be repeated to maneuver these indirectly controlled states
and possibly meet our design criteria.




IV. CONCLUSIONS/REMARKS

A new design procedure for critical variable disturbance absorption
controllers has been presented here. This procedure consists of two basic
methods as described above and is demonstrated in the included examples.
Simulation of the examples was done to verify the design and no problems were
noted. This method retains the drawback of the earlier method (Reference 1)
in that it {s not always possible to stabilize the non-critical variables.
This is demonstrated in Example 1. This lack of stabilization is, however,
easier to spot than in the older method. The second procedure depends on the
ability to maneuver the non-critical variables which is very application
dependent and may or may not be possible.

It is hoped that further researchers will carry on the development and
refine the method still more with hopefully the addition of necessary and
sufficient conditions for a successful application of the design.
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EXAMPLE #1

Objective: Design the control input (U) to stabilize the given system
where X, is the critical variable Xe and X2 is the noncritical variable Xae-

X = X + U + W 3 Xe = [1 01X
(System)
W is a piecewise constant disturbance and a is a constant. Assume:
W=7 ==> H =1

and

g(t); with o(t) zero almost everywhere.

~N
]

ne
Partition the system:

X 1 1 Xe 1 o)
. = | ———— -—=| + u «+ z
Xme o a Xma 1 1

Bl is not zero, so try the control action U = K¥X + T'sZ with T and K given by
equations 10 and 11 resgectively.

BoXl = —Fy ¢H ==> 1xI' = -0%1 ==> [ = 0,

K = -(CXB)TXCXAXMIM® + ([-(CXB)*%CXBlosM*™ + O[] - MxM=],

where
M= [ v} }; C=(1 0]
1

thus 0 .
M® = (M"M)~*M" = ([0 1]| 1 |)-2*[0 1] = [0 1]

and 1
(CBY)* = ({1 0| 1 ) =1

K= -[11)] O O + (1 - 1llexMm* + [0, 821 L O
o 1 o o

K = [0 -1] + [©; 0] = (6, -1]
The control action is then:
U = 8,%X, - Xz
Substituting U into the original system yields:

Xp 3 X, + Xa + O,8X; - Xz = X, k(1 + 6,)

A-1




X2 = a¥kXg + O,.%xX, ~ Xz + Z

Now design ©, to make X, asymptotically stable. Pick 6; = -2, then
U = =22X, - Xa

and the system becomes:
X; = - X;

X== (a - 1)X=~2!X; + 2Z

Note: The stability of Xz depends on the value of a. Simulacion
results are shown for:

a = ~1 ==> Xz is stable
a = 2 =2=> X5 is unstable




*(1-=v) 23e18 D °N 2[qeIS§ °[-v 1n314

(SAONDJ3IS) 3IWIL
0o-ot 00°8 00°9 00"

1 ] .._..
| N M o
[ u_? ! " “ o
_, _ I __
| | S
! | _ | o
_ _ X m o
T | | | | ©
T e
_ ! ! j : |
A S N S s
, _ H _ | .
I ] S
I T
| ” | | | _ |
I e E I |
e L S
| _ | | | | m |
AN U A Y A N N S S
. L o
M ." v ; | _ - ” i w
(o)
- » [em )
(I-=H) 4d1IHIS "3J°N 3794168

A-3




*(T=V) @31e18 -J "N dyqeisun ‘z-y 2andyy

(SANOJ3S) 3FWIL
00°2 09°1 02" 1 08°0 0h"0 00°0

| . i

1

1 : ‘

00’8

!

00°h-

00°0

00°h

1
{
'

1
i

{ . ~ _ .

008

3795 1SNN




EXAMPLE #2

gbjective: Design the control input (U) to stabilize the given system
where X, is the critical variable Xo. X2 and X3 are the noncritical variables
making up the vector Xag-.

. o 1 O (o] 1
X = o 0 1 (X + 1 ju + 0 W ; Xa = (1 O 0)Xx
-1 1 O 1 [0}
(System)

W is a piecewise constant disturbance. Assume:

W = 7 ==) H =1

and
i = g(t); with o¢(t) zero almost everywhere.
Solution:
Partition the syséem:
;. o1 O ] Xa (o] 1
el s T e Ty s oz
Xnw -1 1 O Xre 1 (o]

B. 3 O for this system, thus we use the second procedure and design
Ud = TasZ + r,;i

where [z and 'y are given by equations 26 and 27.
Fs = =(A128B2) 7XF  gH aefF I = =]

-1
Ta = -(Ba)?(AazxBasls + Fo2H) = ~1/201 13|~-1 = 1

Note that:
(Ba)? = (Bz"Ba)-*Bx’ = 1/2(1 1]
The control action Ug is:
Ug = 2 - i
Now design U, = K€ to stabilize equation 23:
; = (A + BxK)e
Use the third order ITAE response as the mode! equation.
E£F + 1.734£2 + 2.13%£ + 1 = O
This yields K = (-1.4 -0.35 =-1.4] and sinrce

Ua ® KE(X =~ Xg)




where
o] 0
Xg X |===~=—- 7 = —-———1 2
LBg‘rs -1
-1

The total control action is (hen:

U=Ug + Ug = =1.8Xy - 0.35(X2 + Z) = 1.8(Xs + 2) + 7 - i
For W piecewise constant i = O almost everywhere. Therefore:

U= -1.4X, ~ 0.3%X2 - 1.4X3 - 0.732

Now design a full ordar estimator to estimate Z. The composite system is giver
by:

« 0101 Q Xy

~ 0010 |~ 1 ~ X2

X = -1 100 (X + 1|y H X = X
0000 (o] Z

and the observer with poles placed at -4 is:

. -16 101 r 0 16

~ =353 010 1 333

X = |=-272 1 0 QO |[X + 1 U+ 271 [X.
2956 0 0 O o] =256

]
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EXAMPLE #3

Qbjgctive: Design che control input (U) to stabilize the given system
where X, is the critical variable Xc. Xz and X3 are the noncritical variables

making up the vector Xaa.

Xa = [1 O 0]X

(]
oOCo
- O -
[e N o]

>

+
~» 00

[

+
OO+

b

W is a piecewise constant disturbance. Assume:
W =12 as) H = 1

and

Z = g(t); with a(t) zero almost everywhere.
Solution:

Partition the system:

Xe 1 0 Xa o] 1
. = o0 1 + C U + (Ol 4
Xra o1 0 Xma 1 0

B, = 0 for this system, thus we try the second procedure and design
Ud = Ta8Z + [y82
where T: and s are given by equations 26 and 27.

1‘; = -(A;:‘B:)"F“H

rz = ‘(B:)'(Az:‘sz‘r; + Fz.H)
Note that:

A,23%B2 = O
Inspection of these two equations reveals no soluticm is possible. Sirmce Bx
has a zero row, let's try to servo control Xz also. Use eguation 19 to
determina ' and substitute T into the equation for the servo tracking error.

Design I to satisfy A,28I = ~F,sH

(1 OIF = -1 ==> [ = | -1
T i where T i3 arbitrary

Equation 16 is used for the servo tracking error. Substituting in T vyields:

€ = |A,, A x| | €y O |U + |A,=xT . FoaH|Z =~ 0 |2z
Az, Aax| e, Bz AooXl + FozH r

+

A-10




T . ;
[0 11 o |fe Lol o) 1 0
-------- -— e B - - -

€e=|0:0 1 + o 1 Tt |z +|oju + |o|z + |-1]z
0:1 0 ‘"'j 10J 1 ) T

ir - - -
[0 :1 o |[ea o ) o)

e=|0!0 1 +loju+| rlz+ |-t ]z

01 OJ"" 1 -1 T

The control cannot completely cancel the effect on the €.. states, let's try
using €3 to cancel the disturbance acting on €z, in a manner similar to what
was done with the critical state. Define:

0
M= E - Ggy with €., = o} .
RxZ + axZ

Note that the set point state must now contain the derivative of the
disturbance since it appears in the € state equation. Taking the derivative
vields:

H = € - €qqg

which in matrix form is:

. o 1 O Ha o o} o {. 0
W= ¢ O 1 1T o * O ju + T 17 + -1 2 - O L.
o 1 O Lu:*ﬂ!l*allJ 1 -1 T BxZ+axl

or when written out becomes:
My = M2

-

Ha = U + 3%x2 + ax + 122 - 2

Mz =S puz + U - 7 + 7187 - 327 + axl

T, B, and a must be chosen to remove the disturbance on €2 which is equal to
2. Thus letting B = 1 = 0 removes the disturbance and setting a = 1 removes
the derivative of the disturbance. Us Can be usaed to remove the remaining
disturbance terms (those in the equation for u3). Noting that 8 = 1 = 0 and
a =1, makes it matter of inspection to determine Ua as:

U.=Z-Z

Now we have removed the disturbance from the system and desire to stabilize it
using Ue. Let:

Ue = Ku
and determine K to stabilize:

H = (A + BXKjp

Use the third order ITAE response as the model equation.

A-11




E!

Then

But

Ha
Ha
Hs

So
Un

But € =
LIS
€
€3
which yields
Ue

The total co

U =
For W piecew

U=

Now design a full order estimator to estimate Z.

by:

> 2.

and

> ).

the observer with

+ 1.7S5%E= + 2.15%£ + L = O
= =M - J.19xu3 - 1.75‘“3
€ - €qp, therefore:
26&
= € . .
= 63 - 137 - a¥Z = €3 -
= -€; - 3.1%5%k€5 - 1.75%€3 + 1.79%xZ
X = Xams therfore:
=z X,
=X=+Z
= X:

-Xa = 3.15%X3 - 3.15%Z - 1.75%Xs

ntrol action is then:

Ua + Ua
ise constant Z

-~
~

O and Z 0

~
~

=Xy = 3.13X2 - 1.75Xs - 2.1352Z

O00O0
O+ Or
OCO0Or O
OO0+
>
O 0O

poles placed at -4 is:

-16 1 0 1 o 16
-353 010 0 353
-272 1 0 0 X + 1 Ju + 272

236 0 0 O (o} L—256

&l2

X3 = 3.15Xz2 - 1.75Xs - 2.15%7 + 1.75%xZ - Z

almost everywhere.

+ 1.75%2

Therefore:

The composite system i1s giver

Xa
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